Exercise 32

Find the critical numbers of the function.

$$
f(x)=2 x^{3}+x^{2}+2 x
$$

Solution

A critical number is a value of x for which the derivative is zero or nonexistent. Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(2 x^{3}+x^{2}+2 x\right) \\
& =2\left(3 x^{2}\right)+(2 x)+2(1) \\
& =6 x^{2}+2 x+2
\end{aligned}
$$

Set $f^{\prime}(x)=0$ and solve for x.

$$
\begin{gathered}
f^{\prime}(x)=0 \\
6 x^{2}+2 x+2=0 \\
2\left(3 x^{2}+x+1\right)=0 \\
3 x^{2}+x+1=0 \\
x=\frac{-1 \pm \sqrt{(-1)^{2}-4(3)(1)}}{2(3)} \\
x=\frac{-1 \pm \sqrt{-11}}{6} \\
x=\frac{-1 \pm i \sqrt{11}}{6}
\end{gathered}
$$

There are no real values of x that satisfy $f^{\prime}(x)=0$, so there are no critical numbers of $f(x)$.

